Correlation between subsurface high-salinity water in the northern South China Sea and the North Equatorial Current–Kuroshio circulation system from HYCOM simulations
نویسندگان
چکیده
The North Pacific Tropical Water (NPTW), characterized by subsurface high salinity, is observed in the South China Sea (SCS) and is often used as an indicator of the water intrusion from the northwestern Pacific into the SCS. Based on the assimilation product from a global high-resolution Hybrid Coordinate Ocean Model (HYCOM) from 2008 through 2013, this study investigates the seasonal variability of subsurface high-salinity water (SHSW) in the northern SCS and its relationship with the North Equatorial Current–Kuroshio circulation system. Results show that the obvious seasonal variability of the SHSW appears at about 100–200 m in depth. It extends as far west as southeast of Hainan, reaching its volume maximum (minimum) in January (May). The seasonal variance contribution (seasonal variance accounting for the entire variance) is 0.38 in the period we considered, albeit with significant annual variance in other years. Further analysis shows that the changes in high-salinity water volume are highly correlated with the shift in the North Equatorial Current bifurcation latitude (NECBL), which reaches its northernmost point in December and its southernmost point in May. Due to the large-scale wind changes in the Pacific, the Luzon Strait transport (LST) weakens (strengthens) when the NECBL shifts to the south (north) during summer (winter), which results in the reduced (enhanced) SHSW intrusion from the northwestern Pacific into the northern SCS. It is also found that, on a seasonal timescale, the Kuroshio transport (KT) does not vary in phase with NECBL, LST and SHSW, indicating that the KT changes are probably not the governing factor for the seasonal variability of SHSW in the northern SCS.
منابع مشابه
Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results
High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2 S and 6 N. Observations are presented from four cruises carried out in different periods of the year (March–May 1995, May–June 1999, July–August 2001 and October–November 1997). Numerical model outputs complement th...
متن کاملKuroshio intrusion and the circulation in the South China Sea
[1] The Princeton Ocean Model is used to study the circulation in the South China Sea (SCS) and its seasonal transition. Kuroshio enters (leaves) the SCS through the southern (northern) portion of the Luzon Strait. The annually averaged net volume flux through the Luzon Strait is 2 Sv into the SCS with seasonal reversals. The inflow season is from May to January with the maximum intrusion of Ku...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملAn extreme internal solitary wave event observed in the northern South China Sea
With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since Mar...
متن کاملImpacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean
The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiw...
متن کامل